Projective families of Dirac operators on a Banach Lie groupoid

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac Operators on Quantum Projective Spaces

We construct a family of self-adjoint operators DN , N ∈ Z, which have compact resolvent and bounded commutators with the coordinate algebra of the quantum projective space CPq, for any ` ≥ 2 and 0 < q < 1. They provide 0-dimensional equivariant even spectral triples. If ` is odd and N = 1 2 (` + 1), the spectral triple is real with KO-dimension 2` mod 8.

متن کامل

The Monodromy Groupoid of a Lie Groupoid

R esum e: Nous d emontrons que, sous des circomstances g en erales, l'union disjoint des couvertes universales des etoiles d'un groupo de de Lie admet le structure d'un groupo de de Lie auquel que le projection a une propri et e de monodromie sur les extensions des morphismes emousse. Ca compl etes une conte d etailles des r esultats annonc es par J. Pradines. Introduction The notion of monodro...

متن کامل

Banach Lie algebroids and Dirac structures

We consider the category of anchored Banach vector bundles and we discuss the notion of semispray. Adding on the set of sections of an anchored Banach vector bundle a Lie bracket with some properties one gets the notion of Lie algebroid. We prove that the Lie algebroids form also a category. A Dirac structure on a Banach manifold M is defined as a subbundle of the big tangent bundle TM ⊕ T ∗M t...

متن کامل

Dirac Operators and Lie Algebra Cohomology

Dirac cohomology is a new tool to study unitary and admissible representations of semisimple Lie groups. It was introduced by Vogan and further studied by Kostant and ourselves [V2], [HP1], [K4]. The aim of this paper is to study the Dirac cohomology for the Kostant cubic Dirac operator and its relation to Lie algebra cohomology. We show that the Dirac cohomology coincides with the correspondin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Noncommutative Geometry

سال: 2016

ISSN: 1661-6952

DOI: 10.4171/jncg/227